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Oligodendrocyte precursor cells (OPCs) are a central nervous system resident population of glia with a distinct molecular 
identity and an ever-increasing list of functions. OPCs generate oligodendrocytes throughout development and across the 
lifespan in most regions of the brain and spinal cord. This process involves a complex coordination of molecular checkpoints 
and biophysical cues from the environment that initiate the differentiation and integration of new oligodendrocytes that 
synthesize myelin sheaths on axons. Outside of their progenitor role, OPCs have been proposed to play other functions 
including the modulation of axonal and synaptic development and the participation in bidirectional signaling with neurons and 
other glia. Here, we review OPC identity and known functions and discuss recent findings implying other roles for these glial 
cells in brain physiology and pathology.   
 
In this review, we provide a brief overview of oligodendrocyte 
precursor cell (OPC) development, fate, and touch on many of their 
known and proposed functions. Since their discovery, OPCs have been 
referred to by several names. This list includes small branching cells, 
type 1 oligodendrocytes, O-2A cells, NG2 cells, NG2 glia, 
polydendrocytes, synantocytes, and a few others. In this review, we 
will refer to these cells as OPCs to indicate their primary function. To 
be specific, these are the central nervous system (CNS) resident 
population of highly branched and tiled glial cells that express genes 
encoding the NG2 chondroitin sulfate proteoglycan (Cspg4) and the 
alpha receptor for platelet derived growth factor (Pdgfra). OPCs can 
generate oligodendrocytes and may play other roles in the nervous 
system. Before covering these many features, we first outline the 
historical context for the discovery, identification, and evolving 
definition of OPCs. 
 
A brief history of the discovery of OPCs  
OPCs were first described at the turn of the 20th century by pioneering 
anatomists.  Remarkably accurate sketches from dog and human brain 
tissue of cells resembling OPCs were made by the Scottish pathologist 
William Ford Robertson in 1899. Robertson called the cells “small 
branching cells” (Robertson 1899).  Subsequently, Del Río-Hortega 
used silver carbonate stain to correctly discriminate between microglia 
and oligodendrocytes (Río-Hortega 1921) and later classified 
oligodendrocytes into four types, referring to Robertson’s cells as the 
“first type” (Río-Hortega 1928). This “first type” likely included some 
OPCs and a subpopulation of oligodendrocytes. Even with such 
prescient descriptions, these “small branching cells” remained 
relatively unrecognized and not studied for almost a century.   

In the late 1970s to early 1980s, scientists used the A2B5 
monoclonal antibody that recognizes a ganglioside to differentially 
mark two types of GFAP+ astrocytes in cultures taken from rodent 
optic nerves (Raff et al. 1983a).  It was found that A2B5+ GFAP- cells 
differentiated into GalC+ oligodendrocytes when maintained in 
chemically defined serum-free medium, while the same cells 
differentiated into A2B5+ GFAP+ type 2 astrocytes when cultured in 
the presence of serum (Raff et al. 1983b).  This suggested that A2B5+ 
cells give rise to both astrocytes and oligodendrocytes and were thus 
called bipotential O-2A (oligodendrocyte-type 2 astrocyte) progenitor 
cells. Similar studies found that the NG2 chondroitin sulfate 
proteoglycan, previously identified to label a population of cultured 
glia, was also expressed by the A2B5+ O-2A progenitor cells and was 
downregulated as the cells differentiated into GalC+ oligodendrocytes 
(Stallcup and Beasley 1987). In the presence of serum, NG2 expression 
persisted on the type 2 astrocytes. These findings indicated that NG2 
is an antigen expressed by O-2A progenitor cells, but a long debate 
followed as to the in vivo correlates of these cultured cells. 
  At the end of the 1980s, it was discovered that platelet-
derived growth factor alpha (PDGF-AA) was the predominant mitogen 
for O-2A progenitor cells, and that its receptor PDGFRA was 

responsible for mediating the mitogenic effect of PDGF-AA on O-2A 
progenitor cells (Pringle et al. 1992).  These studies also showed the 
first appearance of Pdgfra mRNA+ cells in germinal regions of brain 
tissue, which was shortly followed by their migration out of the 
germinal zone and expansion in the parenchyma. Pdgfra expression 
was downregulated in cells that underwent terminal differentiation into 
oligodendrocytes but persisted on some cells into adulthood.  Thus, 
Pdgfra mRNA expression seemed to mark OPCs.   
 Subsequent studies investigated the co-expression of Cspg4 
and Pdgfra revealing that there was an almost complete overlap 
between PDGFRA+ and NG2+ cell populations (Nishiyama et al. 
1996). The notion that NG2+ cells and Pdgfra mRNA+ cells were the 
same cells and likely to be OPCs became accepted in the late 1990s; 
however, at that time, available techniques did not allow direct 
demonstration that OPCs could generate oligodendrocytes, as both 
NG2 and PDGFRA are lost upon their terminal differentiation into 
oligodendrocytes.  Nonetheless, the establishment of these molecular 
markers and the characterization of these cells in culture and in tissues 
established them as the fourth major glial cell population in the CNS.  
 
OPC development and fate 
During mammalian brain development PDFRA and NG2 positive 
OPCs are generated from distinct progenitor domains within the 
ganglionic eminences, ventricular zones, and spinal cord. The neural 
progenitors populating these regions are characterized by the 
production of specific transcription factors and give rise to OPCs that 
migrate throughout the brain and spinal cord (Kessaris et al. 2006; Cai 
et al. 2005; Rakic and Zecevic 2003; Huang et al. 2020).  

Direct evidence for the oligodendrocyte fate of OPCs in 
mice has come mainly from cre-lox fate mapping showing that NG2 
and/or PDGFRA positive cells are indeed OPCs (Kessaris et al. 2006; 
Zhu et al. 2008; Dimou et al. 2008; Rivers et al. 2008; Kang et al. 2010; 
Zhu et al. 2011; Nishiyama et al. 2009). In addition to 
oligodendrocytes, these studies showed that OPCs also generate 
protoplasmic astrocytes in the gray matter of the ventral forebrain (Zhu 
et al. 2008). This suggested that some OPCs in prenatal CNS behaved 
like the culture identified bipotential O-2A cells, however OPCs never 
generated fibrous astrocytes in white matter, and the astrocyte fate of 
OPCs is specifically restricted to early developmental stages (Zhu et 
al. 2011; Huang et al. 2019). Other studies initially suggested that a 
small number of neurons in the anterior piriform cortex were generated 
from Pdgfra-expressing cells (Rivers et al. 2008), but a follow-up 
study did not support the original conclusion (Clarke et al. 2012).  
Neuronal fates were also reported in Plp1-creER mice (Guo et al. 
2010), however there is reported non-specific activation of the Plp1 
promoter in cells other than OPCs (Michalski et al. 2011). Neuronal 
fates were not observed in Cspg4-creER mice (Zhu et al. 2011), in a 
different line of Pdgfra-creER mice (Kang et al. 2010), or in Olig2-
creER mice (Dimou et al. 2008). Thus, the current perspective is that, 
except for some protoplasmic astrocytes generated prenatally, OPCs 
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only generate oligodendrocytes, at least during normal development 
and throughout life (Young et al. 2013; Tripathi et al. 2017; Hill et al. 
2018; Hughes et al. 2018). 
 
OPC residency and morphology  
OPCs reside in almost all regions of the CNS. They exhibit a tiled 
distribution with complex multi-branched arborization (Fig. 1). This 
tiling is established early in development and is found even in regions 
where no oligodendrocytes or myelin sheaths are generated (Lin et al. 
2005; Goebbels et al. 2017). The widespread distribution raises several 
questions related to how and why this patterning is established and 
maintained and whether all OPCs are indeed progenitors for 
oligodendrocytes or if they serve other roles in the brain. For example, 
it is possible that there are different genetic and/or functional classes 
of OPCs participating in progenitor and non-progenitor roles (Dimou 
and Simons 2017; Beiter et al. 2022; Marisca et al. 2020).  

The tiling of OPCs is regulated through a balance of local 
proliferation, oligodendrocyte differentiation, and programed cell 
death (Raff et al. 1993; Trapp et al. 1997). A mix of growth factor 
signals are critical for the developmental establishment of the resident 
OPC populations including PDGF-AA, as established initially in 
cultured OPCs but confirmed in knockout and overexpressing mouse 
models (Noble et al. 1988; Richardson et al. 1988; Pringle et al. 1992; 
Calver et al. 1998), fibroblast growth factor (McKinnon et al. 1990; 
Baron et al. 2000), and neurotrophins (Cohen et al. 1996; Casaccia-
Bonnefil et al. 1996) among others (Barres et al. 1992). Cellular 
sources for these growth factors include neurons, other glia, and 
signals released from vascular endothelial cells. For example, 
migrating OPCs use the vasculature as a scaffold to populate the 
developing nervous system (Tsai et al. 2016; Lepiemme et al. 2022). 
Contact mediated signaling is also involved in OPC separation after 
cell division (Huang et al. 2020), highlighting the balance between 
diffusible environmental cues and OPC cell surface specific signals. 
When OPCs do not receive permissive signals for differentiation and 
integration, they initiate programmed cell death pathways associated 
with cellular autophagy and apoptosis. When these pathways are 
disrupted the balance between OPC self-renewal, death, and 
oligodendrocyte differentiation is skewed (Sun et al. 2018; Meireles et 
al. 2018). Thus, the coincidence of sufficient growth factor 
availability, permitting tissue substrates, and enhancing developmental 
migration results in the establishment of lifelong residency by OPCs 
throughout the CNS.   
 In the adult brain, it is less clear which signals maintain OPC 
tiling, but it is likely that a combination of diffusible and membrane 
tethered cell-cell contact signals regulate the local populations. 
Imaging studies of OPC process dynamics in zebrafish spinal cord and 
mouse cortex have found evidence for contact repulsion when 
neighboring OPC processes touch (Kirby et al. 2006; Hughes et al. 
2013). This proposed ability for OPCs to sense their neighbors results 
in rapid OPC replacement via division and local migration when single 
OPCs die or differentiate into myelinating oligodendrocytes (Kirby et 
al. 2006; Hughes et al. 2013; Hill et al. 2017; Hughes et al. 2018). This 
process likely also accounts for the rapid replacement of OPCs when 
widespread OPC specific genetic based cell ablation approaches are 
used (Xing et al. 2023). Moreover, like the developmental role for 
PDGF-AA, adult OPC population maintenance is dependent on 
signaling through PDGFRA (Đặng et al. 2019). This means that 
sustained environmental cues from neurons, other glial cells, and the 
neurovascular unit contribute to the tiling behavior of OPCs in the 
adult.   
 Once OPCs are resident, they exhibit diverse morphologies 
dependent on the brain region and physiological context. For example, 
at baseline, gray and white matter OPCs differ in their process 
arborization, complexity, and size (Osorio et al. 2023). Similar 
differences are found between OPCs in neuron soma-rich vs axon-rich 
regions of the developing zebrafish (Marisca et al. 2020). The different 
morphologies observed in the zebrafish were associated with different 
fates and cellular activity suggesting a connection between OPC form 
and function. Genetic underpinnings for this diversity are not clear but 

an association with cell division history was found as the emergence 
of a new morphological phenotype occurred almost exclusively after a 
cell division event instead of a single cell directly changing 
morphology without first dividing  (Marisca et al. 2020). Without 
definitive genetic markers, connecting OPC morphological and 
functional heterogeneity has been challenging and whether similar 
connections between morphology and function are present in 
developing and adult mammals is not clear. Future intravital imaging 
approaches allowing longitudinal investigations of OPC shape and 
function could reveal how closely these features are linked in other 
settings.   
 After acute injury, in neurodegenerative contexts, and even 
some psychiatric conditions, OPCs display morphological 
transformations often characterized by hypertrophy and increased 
branching (Ong and Levine 1999; Vanzulli et al. 2020; Yu et al. 2022; 
Chapman et al. 2023). These shape changes are generally considered 
to be a reactive phenotype contributing to the glial scar, however a 
direct role for OPCs in this injury response is not clear. The best 
studied OPC morphological injury response is in the context of spinal 
cord injury and neocortical focal injury via mechanical or laser 
mediated lesions (Hughes et al. 2013; von Streitberg et al. 2021). These 
studies indicate that OPC processes polarize toward the lesion within 
hours followed by cell soma migration and cell division (Fig. 2). This 
response is thought to contribute to the barrier that is established with 
astrocytes and microglia, both by the presence of OPC processes and 
via the deposition of extracellular matrix. Inhibition of injury induced 
OPC proliferation leads to deficits in wound closure suggesting that 
this OPC-specific response is beneficial for injury containment and 
tissue regeneration (von Streitberg et al. 2021). Overall, OPCs can 
quickly alter their morphology in response to cellular and tissue 
damage, hinting at another link between OPC morphology and 
function.  
 
Intrinsic and adaptive generation of oligodendrocytes 
The primary function of OPCs is the generation of oligodendrocytes, a 
process that can occur in various contexts depending on the demands 
of the tissue. Many recent articles have extensively covered this topic 
highlighting that the signals that induce oligodendrocyte generation are 
multifaceted (Bechler et al. 2018; Xin and Chan 2020; Monje 2018; 
Chapman and Hill 2020; Almeida and Lyons 2017). These signals 
range from biophysical cues such as axon caliber to activity-dependent 
and/or sensory-dependent release of signals from neurons and other 
cells in the brain (Fig. 2A) (Mayoral et al. 2018; Bechler et al. 2015; 
Gibson et al. 2014; Mitew et al. 2018; Hill et al. 2014; Liu et al. 2012; 
Makinodan et al. 2012; Hughes et al. 2018). Whether there are distinct 
programs that are initiated for developmental, intrinsic, and/or activity 
modulated generation of oligodendrocytes is an active area of 
investigation in the field.  
 The generation of new oligodendrocytes has been shown to 
be important for specific motor, learning, and memory tasks 
(McKenzie et al. 2014; Xiao et al. 2016; Pan et al. 2020; Steadman et 
al. 2020; Wang et al. 2020). These experiments have all relied on a 
genetic trick to block new oligodendrocyte generation via the inducible 
OPC-specific deletion of transcription factors such as Myrf and Olig2, 
which are required for proper differentiation in adult animals. While 
powerful, additional methods to explore the precise requirement for 
new myelin from the generation of new oligodendrocytes and the 
specific neural circuits that they modify will help further our 
understanding of the necessity for adaptive myelination in these and 
other learning paradigms. There is extensive literature demonstrating  
that OPCs are the major source of remyelinating oligodendrocytes in 
demyelinating and neurodegenerative contexts. The signals inducing 
OPC differentiation after demyelination are likely a combination of the 
intrinsic and adaptive programs used in development and the adult 
coupled with an injury response and reactive OPC phenotypes. 
Remyelination by OPCs is discussed below.  
 
 
 



 

  

 
 
Figure 1 | OPC morphology and residency in the brain. (A) OPCs imaged in the cerebral cortex of a living transgenic mouse with tdTomato 
fluorescent protein labeling (Ai9 (Madisen et al. 2010)) in all cells with Cspg4 activity at the time of Cre recombination (Cspg4-creER (Zhu et al. 2011)). 
Both OPCs and vascular mural cells (blue arrows) are labeled, but OPCs have distinct multibranched and ramified morphologies. This mouse model 
allows titration of cellular labeling such that single OPCs (shown in gray) can be visualized as in the image on the right. Sparse labeling allows for 
analysis of OPC morphology in contrast to a myelinating oligodendrocyte (shown in orange) labeled with membrane tethered EGFP (Cnp-mEGFP 
(Deng et al. 2014)). (B) Immunohistochemistry for OPC specific alpha receptor for platelet derived growth factor (PDGFRA) in various brain regions 
of the mouse forebrain shows widespread tiled distribution and ramified morphology for individual cells across the tissue.  
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Synaptic input to OPCs 
In addition to generating oligodendrocytes that myelinate axons, OPCs 
themselves have extensive interactions with regions of axons that are 
unmyelinated. This includes direct neuronal synaptic input allowing 
OPCs to monitor neuronal activity via neurotransmitter receptor-
mediated signaling (Bergles et al. 2000, 2010). All postnatal OPCs are 
thought to receive this form of synaptic input, which is lost once they 
differentiate into myelinating oligodendrocytes (Kukley et al. 2010; 
De Biase et al. 2010). The reason for such specific and specialized 
signaling is not clear, but the ability to sense patterns of neuronal 
activity is potentially linked to OPC fate decisions and successful 
integration during oligodendrocyte generation (Fig. 2). While 
neurotransmitter exposure and pharmacological manipulations can 
change OPC behavior and fate (Gallo et al. 1996; Pende et al. 1994; Li 
et al. 2013; Lundgaard et al. 2013; Zonouzi et al. 2015), direct evidence 
for how physiological neurotransmitter receptor activation is linked to 
OPC behavior and fate is inconsistent. Thus far, cell type specific in 
vivo manipulations have mainly involved glutamatergic receptor 
subtypes NMDA and AMPA and GABAergic receptor subtypes.  
 Deletion of NMDA receptors in OPCs shows no effects on 
OPC fate (De Biase et al. 2011; Guo et al. 2012), but instead causes 
altered axonal metabolism followed by delayed myelin degeneration 
(Saab et al. 2016), suggesting a more prominent role for the NMDA 
receptor in myelinating oligodendrocytes. Manipulations of AMPA 
receptors in OPCs have variable outcomes. One study demonstrated 
that OPC deletion of Gria2, Gria3, and Gria4 genes that encode 
AMPA receptor subunits results in decreased oligodendrocyte survival 
and integration during differentiation without impacting OPC 
proliferation (Kougioumtzidou et al. 2017). Gria2 regulates channel 
conductance and limits calcium permeability for AMPA receptors, 
therefore other studies have focused specifically on altering the 
functionality or expression of Gria2 to link AMPA mediated changes 
in intracellular calcium with OPC behavior (Chen et al. 2018; Khawaja 
et al. 2021).  OPC-specific Gria2 overexpression showed no effects on 
the generation of oligodendrocytes during development but increased 
OPC differentiation after injury (Khawaja et al. 2021). This finding is 
consistent with work showing that non-specific AMPA receptor 
antagonism increases oligodendrocyte generation after white matter 
injury (Gautier et al. 2015). Viral mediated overexpression of modified 
Gria2 causes changes in OPC proliferation with some minor decreases 
in oligodendrocyte generation (Chen et al. 2018). Therefore, common 
outcomes of these manipulations point towards Gria2 modulating OPC 
proliferation in adult animals with minimal or inconsistent outcomes 
on oligodendrocyte differentiation (Kukley 2023). Studies in zebrafish 
have shown that gria4a (an orthlog of Gria4) decreases OPC migration 
and the number of myelin sheaths made by mature oligodendrocytes 
(Piller et al. 2021), however, it is difficult to make a direct link between 
this result and the Gria2 manipulations in the mouse given the 
differences in the subunits and experimental readouts used. The 
connection between direct glutamatergic synaptic input signaling 
through NMDA and/or AMPA receptors and OPC fate outcomes is yet 
to be resolved. Altogether, how synaptic glutamate release impacts 
OPC fate requires more detailed investigations using consistent 
methodologies, molecular manipulations, and animal models.  
 OPCs also express a variety of genes encoding GABA 
receptors including ionotropic GABAA and metabotropic GABAB 
receptors with a variety of subunit compositions (Habermacher et al. 
2019). Moreover, OPCs receive direct synaptic input from 
interneurons in the developing hippocampus and cerebral cortex (Lin 
and Bergles 2004; Vélez-Fort et al. 2010; Balia et al. 2015). In fact, 
OPCs and parvalbumin (PV)- positive fast-spiking interneurons arise 
from similar germinal niches, and this developmental source predicts 
PV synaptic input to lineage related OPCs (Orduz et al. 2019). 
Deletion of GABAB receptors in OPCs results in decreased 
oligodendrocyte differentiation (Fang et al. 2022). However, it is 
unclear if this is due to the lack of OPCs differentiating or that there 
are also fewer PV axons to myelinate since, intriguingly, loss of 
GABABR in OPCs also results in decreased survival of PV-positive 
neurons. In contrast, conditional OPC GABA γ2 subunit deletion does 

not cause a change in OPC proliferation or oligodendrocyte generation 
(Balia et al. 2017). However, γ2 deletion in OPCs does result in a 
change in myelin patterning and targeting on PV positive axons 
(Benamer et al. 2020), suggesting a more subtle but important 
contribution of GABAergic signaling through GABA receptors 
containing the γ2 subunit in OPCs. Like the story with glutamatergic 
signaling, additional experiments are needed to more clearly define 
how synaptic input from GABAergic neurons impacts OPC behavior.  
 Separate from direct synaptic input from glutamatergic and 
GABAergic neurons, OPCs also possess many other neurotransmitter 
receptors including cholinergic, adrenergic, dopaminergic, purinergic, 
among others (Káradóttir and Attwell 2007; Akay et al. 2021). For 
example, muscarinic acetylcholine receptors have recently emerged as 
drivers of OPC fate for remyelination therapy as discussed below 
(Deshmukh et al. 2013; Mei et al. 2014; Green et al. 2017). Recent 
experiments have also shown the norepinephrine signaling onto OPCs 
can regulate local calcium signals and OPC fate in vivo (Fiore et al. 
2022; Lu et al. 2022). Given the number of receptor subunits expressed 
by OPCs, deletion of one or two may not be sufficient to fully block 
the downstream signaling. A recent zebrafish study, also linking 
synaptic release to local calcium signals, shows that disruption of 
major postsynaptic organizers (PSD-95 or Gephyrin) impairs OPC 
differentiation and oligodendrocyte myelination (Li et al. 2022). As is 
the case of growth factor signaling in modulating OPC behavior and 
fate, the same is true for these neurotransmitter signals that have many 
roles and specific contexts for how and when these neuromodulators 
impact OPC behavior.  
 
OPCs in axon plasticity, phagocytosis, and immune signaling 
OPCs also exhibit roles for modulating axonal growth, plasticity, and 
regeneration after injury. There is extensive literature suggesting that 
the OPC response to tissue damage, like spinal cord injury, contributes 
to the glial scar and an inhibitory environment for regeneration and 
repair (Levine 2016; Bradbury and Burnside 2019). This idea primarily 
comes from the increased production of extracellular matrix molecules 
in damaged tissue, some of which are thought to derive from OPCs 
(Asher et al. 2002; Garwood et al. 2004). These findings initially 
suggested that OPCs could be a repelling source for axons, however, 
as was just discussed, OPCs make extensive synaptic contacts with 
axons and also have been shown to attract axons in culture and some 
injury contexts (Yang et al. 2006; Busch et al. 2010; Filous et al. 2014). 
Thus, OPCs might limit axon regeneration due to their adhesion with 
growing axons instead of their repulsion via production of NG2 and/or 
other secreted chondroitin sulfate proteoglycans known to limit axon 
regeneration (Duncan et al. 2020). Further understanding of the 
mechanisms impacting synapse formation between OPCs and growing 
axons and how reactive OPCs vary from homeostatic OPCs in their 
axon interactions will help resolve this question. 
 During development, several studies show that OPCs can 
modulate axon and synapse plasticity. Taking advantage of the 
zebrafish optic tectum where OPCs are resident without a local 
myelinating oligodendrocyte population, OPC ablation was found to 
increase axonal arborization and complexity, resulting in a behavioral 
change in prey capture (Xiao et al. 2022). Another recent study 
discovered that OPCs contain a significant amount of axon-derived 
debris identified via serial electron microscopy, suggesting that these 
cells are involved in the engulfment / phagocytosis of axons (Buchanan 
et al. 2022). Similarly, immunohistochemistry in the developing 
mouse cortex provides some evidence for synaptic debris in OPCs 
proposing a role for these cells in developmental synaptic pruning 
(Auguste et al. 2022). Finally, intravital imaging of OPCs adjacent to 
neuronal cell death events revealed a targeted rearrangement of OPC  
processes surrounding the dying neuron (Damisah et al. 2020). 
Altogether, these studies suggest a potential role for OPCs in 
modulating axonal and synaptic structure and participating in cell 
debris processing through paracrine or phagocytic mechanisms 
independent of myelination (Fig. 2D-E). Many questions remain for 
whether these observations are connected and the molecular signaling 
pathways involved. For example, there was no evidence for OPC  



 

  

 
Figure 2 | Established and proposed features and functions of OPCs. (A) The primary function of OPCs is to generate oligodendrocytes across 
the lifespan. This can be modulated by various environmental factors ranging from biophysical cues to neuron activity-dependent signaling. Factors 
that enhance oligodendrocyte generation are indicated in cyan and factors that decrease oligodendrocyte generation are shown in red. Similar 
processes are initiated in response to oligodendrocyte death and demyelination, where OPCs serve as the main source of oligodendrocytes that are 
generated after myelin loss. (B) OPCs have many neurotransmitter receptors and receive direct synaptic input from glutamatergic and GABAergic 
neurons. These inputs initiate distinct patterns of OPC membrane depolarization and rises in intracellular calcium; however, the primary functional 
outcome of these inputs is not resolved. (C) After injury OPCs respond within hours with process rearrangement and contribution to the glial scar with 
microglia and astrocytes. Depending on the scale of the damage, OPCs continue to respond via cell migration and proliferation. (D) OPCs might play 
a role in axon growth and regeneration. During development OPC ablation can result in altered axonal arborizations and after injury OPCs might inhibit 
axonal regeneration either via deposition of extracellular matrix (ECM) or via synaptic connectivity with regenerating axons. (E) OPCs exhibit 
phagocytic-like behavior with some evidence showing synaptic and axonal debris in OPCs and directed OPC process rearrangement when 
neighboring neurons die. (F) OPCs upregulate MHC-encoding transcripts in various diseases and experimental contexts and engage in antigen 
presentation and activation of CD8 T cells, potentially initiating and/or exacerbating disease.   
 



 

specific axonal engulfment in the zebrafish study (Xiao et al. 2022) 
and whether the engulfment of the axonal debris in the electron 
microscopy study was passive or active could not be determined 
(Buchanan et al. 2022).  There is some evidence that OPCs express 
genes that encode phagocytic receptors such as Mertk, Ptprj, and Lrp1  
(Buchanan et al. 2022) however a direct connection between these 
genes and OPC phagocytosis and/or engulfment of debris is lacking.  
 Potentially downstream of phagocytosis, other work has 
discovered that OPCs can participate in immune signaling through 
specific activation and antigen presentation (Kirby et al. 2019; Falcão 
et al. 2018; Meijer et al. 2022; Harrington et al. 2023; Fernández-
Castañeda et al. 2020). These observations initially came from single-
cell RNA sequencing in experimental autoimmune encephalomyelitis 
and multiple sclerosis (MS) tissues and demonstrated that a 
subpopulation of oligodendrocyte lineage cells upregulate transcripts 
associated with antigen presentation including those encoding MHC-I 
and MHC-II (Falcão et al. 2018; Jäkel et al. 2019). Similar signals were 
detected in cultured OPCs exposed to Interferon γ, suggesting that this 
is a cell autonomous response by some OPCs to cytokine exposure 
(Jäkel et al. 2019; Kirby et al. 2019). The upstream signal leading to 
the recognition, engulfment, and MHC-I antigen presentation is not 
well defined in OPCs, but one study demonstrated a role for OPC 
production of the phagocytic receptor LRP1 in this process 
(Fernández-Castañeda et al. 2020). A particularly detrimental outcome 
of this response and increased MHC-I production by OPCs is the 
activation of CD8 T cells and resulting cytotoxic OPC (and 
oligodendrocyte) death, potentially depleting the pool available for 
remyelination and exacerbating autoimmune-mediated demyelination 
(Fig. 2F). 
 
OPCs in neuropathology and aging 
In diseases such as MS, myelin-producing oligodendrocytes undergo 
cell death resulting in demyelination. Following this demyelinating 
injury, a spontaneous regenerative response can lead to the production 
of new oligodendrocytes and myelin. Genetic fate-mapping has 
conclusively shown that these new oligodendrocytes are generated 
from OPCs both in the surrounding parenchyma as well as from 
neurogenic zones (Tripathi et al. 2010; Samanta et al. 2015). 
Remyelination can restore action potential propagation and protect 
from axonal injury (Smith et al. 1979; Mei et al. 2016). Therefore, 
several screens for compounds that promote differentiation of OPCs 
were conducted to identify regenerative approaches to treat 
demyelinating injuries (Deshmukh et al. 2013; Mei et al. 2014; Najm 
et al. 2015; Hubler et al. 2018; Early et al. 2018). Some of these 
candidate drugs had positive results in animal models of demyelination 
and moved to human clinical trials where they continue to be evaluated 
for promoting remyelination (Reviewed in (Lubetzki et al. 2020)). 
Continued validation of electrophysiological and diagnostic imaging 
biomarkers of remyelination will aid in determining the efficacy of 
therapies that target restoration of function elicited via OPC 
differentiation to drive myelin repair (Caverzasi et al. 2023). Patients 
with MS show varying levels of oligodendrocyte generation (Yeung et 
al. 2019), suggesting that therapies focused on remyelination via 
harnessing the regenerative capacity of OPCs may be essential for 
promoting functional recovery. 
 While the survival rates of myelinating oligodendrocytes are 
remarkably high across lifespan (Tripathi et al. 2017), gradual 
oligodendrocyte death and myelin degeneration are associated with 
aging (Hill et al. 2018). Furthermore, the capacity of oligodendrocyte 
and myelin regeneration also declines with age (Psachoulia et al. 2009; 
Shields et al. 1999; Chapman et al. 2023) mediated in part by age-
associated changes in OPCs (Sim et al. 2002; de la Fuente et al. 2020). 
During development, OPCs start out as a homogeneous population but 
become functionally heterogeneous across brain regions and aging 
(Marques et al. 2016; Spitzer et al. 2019). Age-associated 
transcriptomic and electrophysiological changes of OPCs lead to a 
decreased potential for differentiation and generation of myelinating 
oligodendrocytes (Shen et al. 2008; Spitzer et al. 2019). Changes to 
extrinsic factors such as tissue stiffness in the aged microenvironment 

may limit the capacity of OPCs to generate new oligodendrocytes 
(Segel et al. 2019). Recent studies show blood- and CSF-derived 
factors from young animals promote OPC proliferation and 
differentiation via youthful monocytes and FGF17 respectively 
(Ruckh et al. 2012; Iram et al. 2022). In addition, intrinsic factors such 
as TET1-mediated DNA hydroxymethylation result in an age-
dependent decline in myelin repair (Moyon et al. 2021), suggesting 
multiple factors lead to age-related decline in OPC functions. Recent 
studies sought to identify therapeutics that increase the capacity for 
oligodendrogenesis and myelin regeneration in the aged nervous 
system. The small molecule fasting mimetic, metformin, which 
modulates the AMPK pathway, restores the differentiation and 
regeneration capacity of aged OPCs (Neumann et al. 2019). 
Genetically or pharmacologically enhancing oligodendrogenesis and 
myelination can reverse age-related memory decline and 
neurodegeneration (Wang et al. 2020; Chen et al. 2021). Future work 
continuing to focus on the effects of aging on OPCs and exploration of 
interventions that facilitate OPC function will help to counteract age-
related decline as well as treatment of neurodegenerative diseases. 
 
Concluding remarks 
OPCs are well recognized as a separate glial cell population in the 
brain, and we know a great deal about their role as the precursors for 
oligodendrocytes. Many molecular signals regulating this process have 
been discovered and several are now being applied in clinical settings 
to enhance oligodendrocyte regeneration in neurodegenerative 
contexts.  Even with this extensive and rich literature, many questions 
remain regarding when, where, and how these molecular signaling 
cascades result in the initiation, differentiation, and successful 
integration of a mature myelinating oligodendrocyte in the intact 
nervous system (Hughes and Stockton 2021). Precise molecular and 
cellular manipulation coupled with in vivo assays will continue to 
reveal the signals involved in these OPC fate decisions.  
 Other remaining questions have been highlighted throughout 
this review. These include heterogeneity within the OPC population 
along with further investigations into the functions played by OPCs 
beyond their progenitor role (Dimou and Simons 2017). When 
considering heterogeneity, it is important to be clear whether the 
heterogeneity arises from genetic diversity within the OPC population 
due to developmental source or other intrinsic predetermined genetic 
programs. There is little evidence for source dependent or genetic 
heterogeneity within OPCs. The different transcriptome subtypes of 
oligodendrocytes revealed via RNA sequencing primarily indicates the 
continuum of differentiation states from OPC to premyelinating 
oligodendrocytes to fully mature myelinating oligodendrocytes, with 
more evidence suggesting diversity in the myelinating stage compared 
to the OPC stage also somewhat complicated by the cell cycle in OPCs 
(Marques et al. 2016). Even without clear genetic diversity, there is 
more evidence for OPC functional heterogeneity likely representing 
plasticity of OPC states in response to cues from the local 
microenvironment (Kamen et al. 2022). These include differences in 
OPC properties and functional responses by brain region (Viganò et al. 
2013; Hill et al. 2013; Sherafat et al. 2021; Marisca et al. 2020) and 
across different ages (Shen et al. 2008; Spitzer et al. 2019; Neumann 
et al. 2019). Contributions from the local microenvironment, whether 
they be from physiological signaling from neighboring neurons or glia 
or activation of OPCs in response to pathological conditions, likely 
drive these heterogenous states. This is not to say that these 
microenvironmental impacts cannot not have long term consequences 
for OPC function, even when these cells are placed in a new 
environment. It just asks the question of whether OPC heterogeneity is 
genetically predetermined during development or if these different 
states emerge through environmental influences. Future work is sure 
to further clarify the duration, functional implications, and reversibility 
of these OPC functional states.    
 As we have highlighted throughout, another major 
remaining question is: what are other functions (beyond their 
progenitor role) played by OPCs in nervous system physiology and 
pathology? These range from engaging in bidirectional signaling with 



 

almost every other cell type in the brain and potentially even the 
peripheral immune system, to responding to damage and disease with 
distinct behaviors. Overall, recent work has established that OPCs are 
multifunctional glia that likely contribute significantly towards 
nervous system development, plasticity, and neurodegeneration on top 
of their primary role of making myelinating cells. 
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